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Abstract—In this paper we propose and study the problem of
k-Collective influential facility placement over moving object.
Specifically, given a set of candidate locations, a group of
moving objects, each of which is associated with a collection
of reference points, as well as a budget k, we aim to mine a
group of k locations, the combination of whom can influence
the most number of moving objects. We show that this problem
is NP-hard and present a basic hill-climb algorithm, namely
GreedyP. We prove this method with (1 − 1

e
) approximation

ratio. One core challenge is to identify and reduce the overlap
of the influence from different selected locations to maximize
the marginal benefits. Therefore, the GreedyP approach may
be very costly when the number of moving objects is large.
In order to address the problem, we also propose another
GreedyPS algorithm based on FM-sketch technique, which
maps the moving objects to bitmaps such that the marginal
benefit can be easily observed through bit-wise operations.
Through this way, we are able to save more than a half
running time while preserving the result quality. Experiments
on real datasets verify the efficiency and effectiveness for both
algorithms we propose in this paper.

Keywords-moving objects, location selection, submodular,
approximate algorithm

I. INTRODUCTION

Location Selection (LS) problem has always received

great attention due to the value of application in many

aspects. Given a set of moving objects Ω, each of which

is represented using a set of reference positions, and a set

of candidate locations C, many methods have been proposed

to detect an optimal c ∈ C, such that c can influence (i.e.,
affect/cover) the maximum number of moving objects [1].

Finding such an optimal location from candidates to estab-

lish a new facility has a wide spectrum of applications such

as marketing, urban planning [2], monitoring wildlife [3],

scientific research, etc. In LS problem, influence refers to the

number (i.e., probability) of persons (i.e., moving objects)

that may visit (i.e., be influenced) if a facility is placed at a

particular location.

There exists several different criteria for evaluating the

influence. For instance, according to BRNN [4], the influ-

ence of a candidate c is defined as the number of objects

Figure 1. Motivating example.

whose nearest neighbors are c. Recently, Wang et al. [5]

introduced a generalized LS problem called PRIME-LS

which takes into account mobility and probability factors

in location selection. The authors employed the cumulative

probability to judge whether an object is influenced by a

particular location or not. We compare both influence criteria

using an example in Fig. 1. On one hand, nearest neighbor

based conventional LS techniques [4] will report c1, but

not c2, influences O1. On the other hand, the cumulative

probability (according to [5]) of O1 being influenced by c2
might be higher than c1 as O1 has four positions, namely

p12, p13, p14, p15, which are close to c2. In light of that, we

select to follow the influence model of [5] and focus on the

cumulative probability settings in this work.

1) Motivation: The proposed algorithm in [5], namely

PINOCCHIO, is substantially efficient in finding only one

location. However, if a user asks to set up a group of

homogeneous facilities and aims to cover as many people

as possible, this method can not be directly and effectively

applied. Reconsider Fig. 1, assume that following the ac-

cumulative probability influence criteria, c2, c3 can both

influence O1, O3, O4; and c1 can influence O2; and c4
influences O4. Suppose we are selecting 2 locations to place

some facilities, directly applying PINOCCHIO [5] and select

the best two candidates will produce a results set {c2, c3}.
However, {c2, c1} or {c3, c1} can eventually influence more

objects than {c2, c3}. That is, PINOCCHIO is not suitable
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to such collective LS problem.
Instead of finding the optimal location, this scenario

requires to find a group of k locations. The problem of

mining a set of k locations from candidates to influence

the maximal persons is also widely required in practice,

e.g., setting up k billboards, running k new restaurants in

a city, opening k stores to sell mobile phones, etc.. Mining

k locations problem has appeared in literature [6]–[9]. In

these works, they extract the positions in a moving object

as a representative position, and if the distance between

this position and candidate c is lower than a certain value,

then it is considered that the candidate c can influence the

moving object. For example, if candidate c overlaps the

moving object, c can influence this object [8]. What’s more,

these methods judging whether candidate c can influence

a moving object or not for mining k locations problem

are tightly coupled with a few specific applications and

can’t be directly applied to other scenarios. For example,

[8] illustrates moving a object must traverse candidate c,
thus, candidate c can influence moving object. However, in

the case of setting up billboard (i.e., monitoring wildlife),

the user (i.e., animals) only need to see the billboards (i.e.,
cameras) within a range. Therefore, as discussed before, we

employ a more general rule of [5] to determine whether

candidate c can influence moving object.
Unfortunately, given a set C of n candidate locations

and m moving objects, the time complexity of calculating

the number of moving objects influenced (following the

cumulative probability model of [5]) by each candidate is

O(mn). The time complexity of finding all subsets that

each subset contains k elements from candidate set C, and

calculating the moving objects set influenced by candidate

should be Ck
nO(km). Afterwards, we need to select a set

from Ck
n subsets which can influence the maximum number

of moving objects. This whole process is exponential and the

time consumption is unacceptable. Specifically, we define it

as the k-Collective Influential Facility Placement problem
and shall theoretically show that it is NP-Hard. To address

the problem, we propose a pair of algorithms, namely

GreedyP and GreedyPS, which solve the k-Collective Influ-

ential Facility Placement problem under the same cumulative

influence probability criteria with [5]. GreedyP is an approx-

imated solution that is guaranteed to provide an (1 − 1
e )

approximation ratio for the k-Collective Influential Facility

Placement problem. In order to reduce the time consumption

of the algorithm, we further propose GreedyPS utilizing FM

sketch techniques, and theoretically prove its effectiveness.
2) Contributions: The contributions of this paper can be

summarized as follows:

• We introduce a novel location selection task, namely

the k-Collective Influential Facility Placement problem,

and theoretically prove this problem is NP-Hard.

• We present a greedy algorithm with an (1− 1
e ) approx-

imation ratio.

• We propose another algorithm by employing FM S-

ketch to further improve the efficiency and provide the

corresponding theoretical study.

• Experimental evaluations on real-world datasets show

that our methods are effective and efficient.

The rest of the paper is organized as follows. We review

the related work in Section II. The formalized problem

definition is given in Section III. Afterwards, we present our

solutions and conduct theoretical studies in Section IV. The

experimental results are demonstrated in Section V. Lastly,

we conclude our work in Section VI.

II. RELATED WORK

In this section, we discuss related efforts in location

selection as well as the recent maximum coverage problems.

A. Location selection

There have been increasing research efforts in LS problem

under various applications [1], [5], [10]–[16]. Most of these

studies assume that user’s locations are static and only the

most influential location is retrieved. Xia et al. [1] defined

the influence of a location as the total weight of its reverse

nearest neighbors (RNNS). Sun et al. [10] validated all

clients and their corresponding BRNN sets and proposed

three pruning techniques to tighten the search space. Yan

et al. [11] further relaxed the criterion from NN facility to

(1 + α) ∗NN , where α is a user-specified value. Wong et
al. [12] studied a similar problem, called MaxBRkNN, in

which all kNN facilities exhibit influence on objects. Zhou

et al. [13] proposed MaxFirst to solve MaxBRkNN. The

solution partitioned the space into quadrants iteratively and

pruned the unpromising candidates using upper and lower

bounds. Recently, Wang et al. [5] introduced a generalized

LS problem called PRIME-LS, which utilizes mobility and

probability factors. In this work, they presented a rule

that uses cumulative probability for all positions along the

moving object to judge the impact. As this rule is more

relevant to real scenarios, we will adopt that rule to judge

that whether a candidate location c ∈ C impacts a moving

object.

B. Maximum coverage problems

Maximum coverage problem has great utility for several

real-world applications [6]–[9], [17]–[21]. In these meth-

ods, every user is modeled as a moving object. Xu et
al. [17] proposed group locations selection problem to find

the minimum number of multiple locations with influence

regions, such that all the objects can be coverd. Mitra

et al. [6] proposed three different applications, namely

TOPS, TUMP and TIPS, respectively. TOPS [7] mainly

showed a multi-resolution clustering based indexing frame-

work called NETCLUS. It exhibits practical response times

and low memory footprints. TUMP focused on providing

good quality of experience (QoE), which differs from our
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problem. TIPS [18] is closely related to the TOPS problem,

which aims to minimize the maximum inconvenience, i.e.,
minimizing the extra distance travelled by a commuting user

in order to avail a service at her nearest service location. Li

et al. [8] aimed to find k locations set, reversed by the the

maximum number of unique trajectories, in a given spatial

region. In brief, if a candidate c is in the object, it can

influence this moving object. Zhang et al. [9] proposed and

studied the problem of trajectory-driven influential billboard

placement, which finds a set of billboards within the budget

to influence the largest number of trajectories. As long as

the position in a trajectory falls within a certain radius of

the candidate, it is believed that candidate can influence the

trajectory. In these works, they extract the positions in the

trajectory as a representative position, and if the distance

between this position and candidate c is lower than a certain

value, then it is considered that the candidate c influence the

trajectory. Guo et al. [20] and Zhang et al. [21] illustrated

that given candidate set (bus trajectories) and trajectories

with longitude, latitude, timestamp and interest. In these

scenes, k bus trajectories carrying advertisement to influence

maximum users are returned, which are different from our

work.

Reconsider Fig. 1, we illustrate the different result if the

influence criteria varies. For instance, candidate c1, c2 can’t

influence any of the objects according to [8]. The rules for

determining the impact in [7], [9] are similar, and c1, c2 can

affect both O1 and O2. Comparing with these works, the

cumulative probability proposed in [5], c1 only influences

O1, c2 influences O1 and O2. In this paper, we employ the

influence setting of [5] and present a pair of algorithms to

find k locations in candidate set which can affects the largest

number of moving objects.

III. PRELIMINARY AND PROBLEM DEFINITION

In this section, we begin by introducing some terminology

that is necessary for the definition of the problem as well as

the influence criteria that decides whether a candidate affects

a moving object (user).

A. Preliminary

A location p is a point in a two-dimensional Euclidean

space, denoted by latitude and longitude. Given two lo-

cations p1 and p2, the distance between them is denoted

by dist(p1, p2). In this paper, we use a set of discrete

positions O = {p1, p2, ..., pr} to represent a moving object.

We denote candidate locations for new facilities to deploy

as C = {c1, c2, ..., cn}. The probability that an object at

location p is influenced by a facility c ∈ C is denoted

by Prc(p). As we are studying a general problem that

may also be used in domains including all types of facility

placement applications, where distance is the common factor

among all these domains, we select to focus on distance

here although other factors may also play a role in specific

scenarios (e.g., content of an advertising balloon, altitude of

a relay station, etc.). Therefore, Prc(p) can be computed

as Prc(p) = PF (dist(c, p)). Hereby, PF (·) is a kernel

function that monotonically decreases. As a result, the

influence probability only depends on the distance. O is

influenced by c if and only if there is at least a position pi of

O influenced by c. The probability that O is influenced by

c, namely cumulative probability, can be defined as follows.

Definition 1: Given candidate location c and a moving

object O with r positions {p1, p2, ..., pr}, the cumulative in-
fluence probability of O being influenced by c, denoted by

Prc(O), is defined as: Prc(O) = 1−∏r
i=1(1−Prc(pi)) [5].

Definition 2: Given a moving object O, a candidate lo-

cation c and a probability threshold τ , c can influence O
if and only if Prc(O) ≥ τ . Further, given a set of mobile

object Ω, the influence value of c, denoted as inf(c), is the

number of mobile objects in Ω that are influenced by c [5].

Prc(O) measures the extent to which O is influenced

by c. Given a set of objects Ω = {O1, O2, ..., Om} and

a user-specified probability threshold τ , we can evaluate

inf(cj)(cj ∈ C) for every candidate location.

Example 1: (See Fig. 1) We only use two moving objects

O1, O2 and candidate c1, c2 as examples. Assume the inde-

pendent influence probabilities of c1 at positions p11, p12,

p13, p14 and p15 are 0.5, 0.1, 0.2, 0.15 and 0.12, respectively.

Then Prc1(O1) = 1 − (1 − 0.5)(1 − 0.1)(1 − 0.2)(1 −
0.15)(1− 0.12) = 0.73. Similarly, since the probabilities of

c1 influencing positions p21, p22, p23, p24 and p25 are 0.25,

0.35, 0.33, 0.3 and 0.38, respectively. Prc1(O2) = 0.86. If τ
is set to 0.75, c1 only influences O2 but not O1, although O1

even has the NN position p11. Hence, inf(c1) = 1. On the

other hand, if Prc2(O1)=0.8 and Prc2(O2)=0.79, then c2
obviously influences both O1 and O2. That is, inf(c2) = 2.

B. Problem Definition

We are now ready to define the k-Collective Influential

Facility Placement problem to be addressed in this paper.

Firstly, we extend Definition 2 in order to evaluate the

number of objects influenced by a set of candidates.

Definition 3: Given a candidate set S, S =
{c1, c2, ..., ck}. σ(S) = |{O|Prci(O) ≥ τ, ci ∈ S,O ∈ Ω}|.
σ(S) denotes the total number of moving objects that are

influenced by candidate set S.

Then, we are ready to formally present the definition of

our problem.

Definition 4: Given a set of candidate locations C =
{c1, c2, ...cn}, a set of moving objects Ω = {O1, O2, ...Om}
where Oi = {p1, p2, ..., pr}, the budget number of new

facilities k (k ≤ n). The k-Collective Influential Facility
Placement problem aims to mine ∃S ⊆ C (|S| = k) to

maximize σ(S).

Example 2: Consider Table I as an example, which lists

the information that every location c can influence a set of
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Table I
THE OBJECTS INFLUENCED BY CANDIDATES

Candidate The objects influenced by ci
c1 O2, O3

c2 O1, O2, O4

c3 O4

objects1. Assume we need to find two locations from C, i.e.,
k = 2. According to the table, O2 and O3 are influenced by

c1. O1, O2 and O4 are influenced by c2. Therefore, when k
is set as 2, S = {c1, c2} is the best choice as it can influence

all the objects of O1, O2, O3 and O4.

IV. SOLUTIONS TO k-COLLECTIVE INFLUENTIAL

FACILITY PLACEMENT PROBLEM

Intuitively, a brute-force approach to address the problem

in Definition 4 can be described as follows. Find all subsets

containing k elements from C, compute the number of

objects influenced by every subset, i.e., σ(·), and finally

return the subset with the maximum σ(·). However, the

time complexity of this process is obviously exponential.

As we shall prove immediately, the problem in Definition 4

is NP-Hard. Therefore, one practical way to address the

problem is to find an approximation algorithm that runs in

polynomial time. To this end, we firstly propose a basic

greedy algorithm to address this problem. In order to further

reduce the running time, we also provide an more efficient

solution utilizing FM Sketch technique [22], [23].

Before presenting our basic solution, we firstly provide a

theoretical study showing that the problem in Definition 4

is NP-Hard. It is not hard to prove that our target, i.e.,
k-Collective Influential Facility Placement problem with

respect to σ(·), is equivalent to the well-known Max k-cover

problem.

Definition 5: R = {a1, a2, ..., an}, Ri represents a

subset of R, P (R) is the collection of Ri, P (R) =
{R1, R2, ..., Rl}. Max k-cover is the problem of selecting

k subsets from P (R) such that their union set contains as

many points as possible [24].

Theorem 1: The k-Collective Influential Facility Place-

ment problem in Definition 4 is NP-hard.

Proof: Given Ω = {O1, O2, ..., Om}, let Tr(ci) denote

the user sets influenced by ci and Tr(ci) ⊆ Ω, and let

Q = {Tr(c1), T r(c2), ..., T r(cl)}. Selecting a group of k
locations from C to affect the most objects is equivalent

to extracting k subsets from Q to influence the maximum

number of elements from Ω. Thus, k-Collective Influential

Facility Placement problem in Definition 4 is the same as the

Max k-cover problem in Definition 5. As mentioned in [24],

the Max k-cover problem has been proven to be NP-hard.

Therefore, the problem in Definition 4 is NP-hard.

1In the following of this paper, we shall use user and object interchange-
ably for ease of presentation.

Algorithm 1 GreedyP Algorithm.

Input: The set of candidates C; The set of Object; The

number of new facilities k;

Output: The set of selected locations S which k elements;

1: Calculate the object set influenced by every candidate,

Tr(C);
2: S = ∅;

3: for i = 1 to k do
4: find si ∈ C − S, where the value of inf(si) is

maximum;

5: S = S ∪ si
6: each sj ∈ C − S
7: delete Tr(sj) ∩ Tr(S) from Tr(C);
8: end for
9: return S;

A. GreedyP Algorithm

1) Algorithm design: As the target problem is NP-hard,

we shall seek for an approximated solution that can address

the task in polynomial time. Intuitively, a popular and easy

way to address Max k-cover is greedy approach. Inspired

by that, we design a basic greedy solution, namely GreedyP

(short for Greedy PRIME-LS) towards the k-Collective

Influential Facility Placement problem. The procedure of

GreedyP algorithm is outlined in Algorithm 1. The algorithm

begins by computing the sets Tr(C) = {Tr(ci)|ci ∈ C} via

PINOCCHIO Algorithm [5](Line 1). Besides, we initialize

the target set S as an empty set (Line 2). Afterwards, we

perform k iterations to select the locations one after another.

In each iteration, it selects the site si which can influence

the maximum number of objects. If a site si is selected, we

immediately delete the object influenced by si from Tr(C)
(Lines 3-8). Finally, after k iterations, it returns the target

set S (Line 9).

Example 3: Reconsider Table I as an example, assuming

k = 2. In the first iteration, candidate c2 is selected

as it can influence the most number of moving objects,

i.e., O1, O2 and O4. Thus, the value of inf(c2) is the

maximum. We merge c2 into set S. Then, we delete the

moving objects influenced by c2. Afterwards, we perform

the second iteration. In this round, c1 can influence O3, and

c3 influences no object. Therefore, we shall select c1 into

set S. Thus, c2 and c1 can influence four moving objects in

total.

2) Theoretical study: In this part, we shall theoretically

prove that the results quality of our GreedyP algorithm is

guaranteed. To prove that, we shall firstly introduce a group

of definitions and lemmas.

Definition 6: Consider an arbitrary function σ(·) that

maps subsets of a finite ground set U to non-negative real

numbers. We say that σ is submodular if it satisfies a

natural “diminishing returns” property: the marginal gain
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from adding an element to a set is at least as high as the

marginal gain from adding the same element to superset.

Formally, a submodular function satisfies σ(A ∪ {v}) −
σ(A) ≥ σ(B ∪ {v}) − σ(B), for all elements v and all

pairs of sets A ⊆ B ⊆ U .

Lemma 1: For a non-negative, monotone submodular

function σ, let S be a set of size k obtained by selecting

elements one at a time, each time choosing an element that

provides the largest marginal increase in the function value.

Let S be a set that maximizes the value of σ over all k-

element sets. Then σ(S) ≥ (1 − 1
e ) · σ(S∗), where S∗ is

the optimal solution; in other words, S provides an (1− 1
e )-

approximation ratio. [25]

Afterwards, we shall show that the evaluated function σ(·)
in our problem definition is also submodular in Lemma 2.

Combined with Lemma 1, we can further illustrate the

approximation rate guarantee of the greedy algorithm.

Lemma 2: The function σ(·) defined in Definition 3 is

non-negative, monotone, and submodular.

Proof: The proof of this Lemma is in Appendix.

Theorem 2: GreedyP algorithm as shown in Algorithm 1

can achieve (1− 1
e ) approximation ratio.

Proof: It can be directly proved according to Lemma 1

and Lemma 2.

Theorem 3: The time complexity of Algorithm 1 is

O(n′mr′) + O(knm2), where k is the budget number of

locations required, m is the number of moving objects and

n is the number of candidates.

Proof: The time complexity of calculating object set

for every candidate is O(n′mr′), where n′ is the number

of candidates to be validate after apply pruning rules , r′

is the number of positions that has to be used for influence

computation after applying Strategy 2 , m is the number

of moving objects. In our work, we only use the pruning

rules and Strategy 2 [5]. The time complexity of deleting a

process that already affects the object of S is O(knm2)
in the worst case. This process takes a lot of time and

reduces the efficiency of the algorithm. Thus, the total time

complexity is O(knm2) +O(n′mr′).
Notably, the time consumption in Algorithm 1 is mainly

affected by two aspects. On the one hand, it takes a lot of

time to calculate a set of each candidate that affects moving

objects in Line 1. We utilize an efficient algorithm called

PINOCCHIO that leverages on two pruning rules based on

a distance measure. These rules enable us to prune many

inferior candidate locations prior to influence computation,

paving the way to efficient and accurate solution. On the

other hand, we need to delete the moving objects influenced

by S in Line 7. Although PINOCCHIO provides a good

solution for the first aspect, the running time of the algorithm

maybe costly in large dataset as the second aspect also takes

much time. In order to address this problem, we further

present a more efficient solution in next part.

B. GreedyPS Algorithm

In order to reduce the time cost of the second aspect afore-

mentioned, i.e., recognizing the moving objects that shall

be deleted after current iteration (Line 7 in Algorithm 1),

we propose to utilize FM sketch strategy. FM algorithm

proposed by Flajolet and Martin [23] is a bitmap based

algorithm that can efficiently estimate the number of distinct

elements (data points). Let F be a bitmap of length L with

subindexed [0, L − 1], and all bits are initialized as 0 (i.e.,
F [j] = 0 for 0 ≤ j ≤ L−1). Suppose the h(·) is a randomly

generated hash function which maps the identification of

each object into an integer in [0, L − 1]. An FM sketch on

P = {O1, O2, ..., Ol}, denoted as F (P ), is a bitmap with

length L which is defined as:

F (P ) : ∀0 ≤ j ≤ L− 1, F (P )[j] = 1

iff ∃Oi ∈ P,h(Oi) = j, 1 ≤ i ≤ l.

As h(·) is a randomly generated hash function, a single

FM sketch may not accurately accomplish the task. In order

to improve the accuracy of FM algorithm, multiple copies

(say w) of FM sketches are constructed based indepen-

dently generated hash functions. Let f(P ) represent the

set of w FM sketches generated over P . That is, f(P ) =

{F (P )
1 , F

(P )
2 , ..., F

(P )
w }, where each element Oi ∈ P is

hashed into these FM sketches, respectively, as described

above.

Suppose f is applied over two sets of objects, e.g., f(P )
and f(Q), generated by the same L and the same set of

hashing functions. We define the bit-union of both sets in

terms of the bitwise-or operator (denotes by ∨) as follows.

Definition 7: Let f(P ) = {F (P )
i : 1 ≤ i ≤ w}, f(Q) =

{F (Q)
i : 1 ≤ i ≤ w}, we define the bit-union operation of

f(P ) and f(Q), denoted using f(P ) ⊕ f(Q), as {F (P )
i ∨

F
(Q)
i : 1 ≤ i ≤ w}, where each F

(P )
i ∨ F

(Q)
i is also a

bitmap with subindexes [0, L−1], such that for 1 ≤ i ≤ w :

∀0 ≤ j ≤ L − 1, (F
(P )
i ∨ F

(Q)
i )[j] = 1 iff F

(P )
i [j] =

1 or F
(Q)
i [j] = 1.

An important feature of FM sketch is that the sketch for

the union of a pair of arbitrary sets P and Q can be expressed

as the bit-union operation between their corresponding s-

ketches, which can be easily interpreted using bitwise-or

operation in bitmaps. Given a set of w hash functions and

two collections, P and Q, we have f(P∪Q) = f(P )⊕f(Q).
This can be easily justified based on Definition 7.

The FM sketch can be used to speed up the update stage

of GreedyP Algorithm. The marginal utility of P and Q can

be denoted as Δ = f(P )⊕ f(Q)− f(P ), where “−” is the

bitwise-minus operation for each bitmap F . The GreedyP

algorithm shown in Algorithm 1 can be changed as follows.

The procedure of deciding whether a candidate location

influences the largest number of users can now be easily

interpreted as finding the bitmap which has the largest count

of “1”. Algorithm 2, namely GreedyPS (short for Greedy
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PRIME-LS with Sketches), details the modified algorithm

using FM Sketch. The algorithm begins by computing the

sets Tr(C) and converts moving object information to 1

or 0 in bitmap (Line 1). Then, similar to Algorithm 1, it

initializes the target set S as an empty set (Line 2). In

each of k iterations, it selects the site si that can influence

the maximum number of moving objects, and deletes the

moving objects influenced by si immediately. During this

process, we update the corresponding bitmaps using bitwise-

or operation in order to delete the moving objects influenced

by S. Finally, we return the target set S (Line 9).

Example 4: Reconsider Table I as an example, and sup-

pose we adopt only one FM sketch, i.e., a bitmap for each

location candidate. Without loss of generality, we design a

simple bitmap with 4 bits, each of which corresponds to

a moving object. As c1 can influence O2, O3, the corre-

sponding bitmap is 0110. As c2 can influence O1, O2, O4,

its bitmap is 1011. c3 can influence O4, its bitmap is 1000.

In the first iteration, we put c2 into S as it has the most “1”.

The current bitmap becomes 1011, and the bitmaps of c2 and

c3 are accordingly changed to 0100 (1011 ∨ 0110 -1011)

and 0000 (1011 ∨ 1000 -1011), respectively. In the second

iteration we can choose c1 directly without recomputing the

influenced moving objects. Finally, we return S = {c1, c2}.
Only using one bitmap in algorithm, the resulting set is

not ideal. The reason is that multiple moving objects are

mapped to the same bit in bitmap during the execution of

the algorithm, which causes a large deviation. Therefore, we

map moving objects to multiple bitmaps using different hash

functions to reduce the bias. Later, we show that increasing

the number of bitmaps can improve accuracy.

Theorem 4: Given two sets of moving objects A and B,

where |A| ≥ |B| and let φ(w)(·) denote the number of “1”

after · mapped into w bitmaps, then the following holds:

∀w > 1, P r[φ(w)(A) ≥ φ(w)(B)] > Pr[φ(1)(A) ≥ φ(1)(B)].

Proof: When w = 1, the probability that φ(1)(A) is

larger than that φ(1)(B) can be recorded as Pr[φ(1)(A) ≥
φ(1)(B)] = ρ.

The probability that φ(w)(A) is larger than that φ(w)(B) is

at least 1− (1−ρ)w, denoted as Pr[φ(w)(A) ≥ φ(w)(B)] ≥
1− (1− ρ)w.

Pr[φ(w)(A) ≥ φ(w)(B)] − Pr[φ(1)(A) ≥ φ(1)(B)] =
1− (1− ρ)w − ρ ≥ 0.

Specifically, if and only if w = 1, 1− (1− ρ)w − ρ = 0.

That is, ∀w > 1, Pr[φ(w)(A) ≥ φ(w)(B)] > Pr[φ(1)(A) ≥
φ(1)(B)].

Remark 1: Pr[φ(w)(A) ≥ φ(w)(B)] is monotonically

increasing. When w is close to infinity, the value is close

to 1. In that case, Pr[φ(w)(A) ≥ φ(w)(B)]−Pr[φ(1)(A) ≥
φ(1)(B)] is close to 1− ρ.

Based on the above theorem, we can also observe that the

results quality of GreedyPS algorithm is similar to GreedyP

when enough number of bitmaps are adopted.

Algorithm 2 GreedyPS Algorithm.

Input: The set of candidates C; The set of Object; The

number of new facilities k;

Output: The set of locations S with k elements;

1: Calculate the object set influenced by every candidate,

Tr(C), and compute FM sketch sets for each candidate,

f(Tr(ci)), ci ∈ C;

2: S = ∅, f(current) = ∅;

3: for i = 1 to k do
4: find si, where the count of ‘1’ in bitmaps is the

maximum;

5: S = S∪si, f(current) = f(current)⊕f(Tr(si));
6: each sj ∈ C − S
7: f(Tr(sj)) = f(current) ⊕ f(Tr(sj)) −

f(current);
8: end for
9: return S;

Theorem 5: The time complexity of Algorithm 2 is

O(n′mr′) + O(nmw) + O(knw), where m is the number

of moving objects, n is the number of candidates and w is

the number of bitmaps.

Proof: The time complexity of calculating object set

for every candidate is O(n′mr′), as mentioned in [5]. The

time complexity of mapping moving objects into w bitmaps

is O(nmw). The time complexity of updating bitmaps by

utilizing bitwise-or is O(knw). Therefore, the complexity of

the algorithm is O(n′mr′) +O(nmw) +O(knw).
According to the time complexity analysis, when the

number of bitmaps is very large, the efficiency brought

by the bitwise-or operation is reduced. Therefore, there

exist a tradeoff between the efficiency and accuracy in the

algorithm. In light of that, the algorithm can be improved in

the following way. The upper bound of the marginal utility

for any location sj is its own utility. Thus, if the current best

marginal utility of another location si is already greater than

that, it is not required to do the union operation with sj . If

the locations are sorted according to their marginal utility in

descending order, the scan can stop as soon as the first such

site sj is encountered.

In our implementation, the FM sketches are stored 32

bits. This allows handling of roughly 232 number of moving

objects. The length 32 is chosen since the bitwise-or oper-

ation of two bitmaps is extremely fast in modern operating

systems.

V. EXPERIMENT

A. Experiment Setup

1) Datasets: Table II describes the two real-world

datasets we use in the experiments. We adopt check-in data

here for two reasons: the effectiveness can be compared with

check-in ground-truth, which is actual number of visitors for

each place of interest; the probability models of check-in
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Table II
DESCRIPTION OF REAL-WORLD DATASETS.

Foursquare Gowalla
number of users (objects) 2,321 10,162

number of check-ins (positions) 167,231 381,165
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Figure 2. Effect of k (Foursquare, 20 bitmaps)

with respect to distance have been justified. The position of

check-ins in Foursquare are all located in Singapore, while

those in Gowalla are mainly in California.

2) Experimental settings: GreedyP and GreedyPS algo-

rithms are both tested in the experiments. They are imple-

mented in C++, runing on a 3.3 GHz machine with 8 GB

RAM under Windows 7 (64 bit).

In line with the settings in paper [5], the default values of

probability threshold τ in Foursquare and Gowalla are set

as 0.99 and 0.7, respectively.

The source code of this work can be found in our project

homepage2.

3) Algorithms:

• PINOCCHIO: It refers to the solution in [5]. We

evaluate the inf(·) for all candidates, and select the top

k candidates with the maximum inf(·) as the results.

• GreedyP: The GreedyP algorithm in Algorithm 1.

• GreedyPS: The GreedyPS algorithm in Algorithm 2.

In the following, we evaluate the performances for all

methods in the aspects of the number of objects influenced

by candidates as well as the time cost for returning the

results.

B. Experiment Results

In this section, experiments about the effectiveness for

GreedyPS are averaged after 10 groups of experiments. In

each of the following experiments, we randomly select 600

positions from the corresponding dataset as the candidate

locations to place the facilities.

First, we fixed the number of bitmaps and candidates.

When the value of k is constantly changing, the following

experimental results are obtained.

2https://lihuixidian.github.io/malos/
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Figure 3. Effect of k (Gowalla, 30 bitmaps)
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Figure 4. Number of candidates (Foursquare, 20 bitmaps)

Fig. 2 shows the results when the number of bitmaps is

fixed at 20, the number of candidates is 600 in Foursquare
dataset. The Fig. 2(a) shows the number of objects as the

value of k varies. Fig. 2(b) illustrates the time cost for

PINOCCHIO, GreedyP and GreedyPS. GreedyP returns the

maximum number of objects and its time consumption is

the worst. Although PINOCCHIO takes the least time, the

number of objects influenced by candidates is also small.

Fig. 3 shows the results when the number of bitmaps is

fixed at 30, the number of candidates is 600 in Gowalla
dataset. Fig. 3(a) shows the number of objects as the value

of k varies, while Fig. 3(b) illustrates the time consumption.

Generally, The number of objects using GreedyPS is over

90% for GreedyP. Moreover, GreedyPS takes only half the

running time for GreedyP. However, the time consumption

for PINOCCHIO is the least and the number of objects

using PINOCCHIO algorithm is only a half of GreedyP.

We can find a phenomenon that the time does not change

significantly as the value of k varies. The reason for this

phenomenon may be that the time consumption is the

longest to remove the overlap of trajectory sets influenced

by candidates in the first iteration.

The following part explains the number of moving ob-

jects influenced by candidates and time consumption as the

number of candidates varies.

Fig. 4 displays the results, the value of k is 10 and the

number of bitmaps is fixed at 20 in Foursquare. Fig. 4(a)

shows the number of objects influenced by candidates.
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Figure 5. Number of candidates (Gowalla, 30 bitmaps)
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Figure 6. Number of objects (Gowalla, 30 bitmaps)

Fig. 4(b) illustrates the time consumption. GreedyP algo-

rithm returns the maximum number of objects and time con-

sumption is the worst. Although the PINOCCHIO algorithm

takes the least time, the number of objects influenced by

candidates is also the least.

Fig. 5 illustrates the results when the value of k is

10 and the number of bitmaps is fixed at 30 in Gowalla
dataset. Fig. 5(a) displays that the number of moving objects

using GreedyPS can achieve 90% compared with GreedyP

algorithm. The PINOCCHIO algorithm only reaches half of

the number of using GreedyP algorithm. Fig. 5(b) shows

the time consumption for the three algorithms. The time

consumption of PINOCCHIO is the least, followed by

GreedyPS, and GreedyP algorithms.

Fig. 6 displays the comparison of the three algorithms

when the number of objects is varied. As the number of

objects in Foursquare dataset is too limited, hereby we

only test the scalability with respect to the number of

objects in Gowalla. In all experiments, the value of k
is 10, the number of candidate locations is 600 and the

number of bitmaps is 30. Fig. 6(a) illustrates the number of

objects influenced by 10 candidate locations. The number

of objects influenced using the PINOCCHIO algorithm is

only half of that of GreedyP algorithm. Compared with

GreedyP algorithm, GreedyPS algorithm can obtain nearly

90% objects. Fig. 6(b) shows the time consumption. The

time consumption of PINOCCHIO is the least, followed by

GreesyPS, and GreedyP algorithm.
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Figure 7. Number of bitmaps (Gowalla)
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Figure 8. Number of bitmaps (Foursquare)

Fig. 7 shows the results for the scenario when the number

of bitmaps changes in Gowalla dataset. As the number

of bitmaps increases, the number of objects influenced by

candidates and the time consumption are both increasing.

Fig. 7(a) shows the trend of number of objects and time

consumption as the number of bitmaps changes, when

k = 10. The GreesyP algorithm can totally return 8561

objects. The time consumption for GreedyP is 1,228s. When

the number of bitmap is one, the number of objects using

GreedyPS is only 3,277, but the time cost is extremely

limited, i.e., less than 1/10 that of GreedyP. If there are 40-

50 bitmaps, precision of GreedyPS can achieve over 90%

compared with GreedyP and time consumption is only half

of the GreedyP algorithm. Fig. 7(b) illustrates the results

for the scenario when k = 5 in Gowalla dataset, when the

number of bitmaps increases. The GreedyP algorithm can

totally influence 7427 objects, and the time consumption

is 1,213s. When there is only one bitmap, tprecision of

GreedyPS is only 40% compared with GreedyP algorithm,

but the time consumption is dramatically reduced. If there

are 40-60 bitmaps, the precision of GreedyPS can achieve

about 95% and the time consumption is only half of the

GreedyP algorithm.
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Furthermore, we conduct another group of experiments to

show how the effectiveness and efficiency will be affected

when we employ more bitmaps in GreedyPS algorithm.

Fig. 8 displays the results for the scenario when the number

of bitmaps changes in Foursquare dataset. Fig. 8(a) shows

The GreedyP algorithm can totally return 2311 objects

influenced by 10 candidates, and the time consumption is

716s. When there is only one bitmap, precision of GreedyPS

is only 75% compared with GreedyP, but time consumption

is extremely low. If there are 5-10 bitmaps, precision of

GreedyPS can achieve about 90% and time consumption is

only one-third of the GreedyP algorithm. Fig. 8(b) illustrates

the GreedyP algorithm which mines 5 candidates can totally

influence 2287 objects, and the time consumption is 713s.

When there is only one bitmap, precision of GreedyPS is

only 78% compared with GreedyP, but the time consumption

is extremely low. If there are 10-30 bitmaps, precision of

GreedyPS can achieve about 95% and the time consumption

is only half of the GreedyP algorithm.

VI. CONCLUSION

In this paper, we have introduced a k-Collective Influ-

ential Facility Placement problem based on the cumulative

influence probability criteria defined in [5]. We prove that

the proposed problem is NP-hard. Due to that, we present

a basic greedy algorithm called GreedyP with a provable

approximation bound 1− 1
e . Considering the time cost of the

algorithm may be large in huge dataset, we futher present

a more efficient algorithm, namely GreedyPS, using FM

sketch to dramatically speed up the moving object update

process of GreedyP. We also theoretically justify that, by

varying the number of bitmaps adopted in GreedyPS, we are

able to control the tradeoff between efficiency and accuracy.

Empirical study over two real-world datasets justifies our

theoretical study and demonstrates that GreedyP can achieve

the best effectiveness with relatively longer running time;

while GreedyPS can solve the problem more efficiently with

a satisfied accuracy.
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APPENDIX

Proof: According to Definition 3, σ(C) denotes the

number of moving objects influenced by C. Let Tr(ci)
be the moving object set influenced by ci, i.e., Tr(ci) =
{O1, O2, ..., Om}.

∀A ∈ C, σ(A) ≥ 0.

Thus, the function σ(·) is non-negative.

∀A ∈ C, σ(A) ≥ 0.

∀e, e ∈ C −A, σ(e) ≥ 0, σ(A ∪ e) ≥ σ(A).
Thus, the function σ(·) is monotone.

Suppose A ⊆ B ⊆ C, σ(A) ≥ 0, σ(B) ≥ 0.

∀e, e ∈ C −B, we can get:

1) If Tr(A) = ∅ and Tr(e) ∩ Tr(B) = ∅.

σ(A ∪ e)− σ(A) = inf(e).
σ(B ∪ e)− σ(B) = inf(e).

Thus, σ(A ∪ {e})− σ(A) ≥ σ(B ∪ {e})− σ(B).
2) If P = Tr(e) ∩ Tr(A) = {O11, O12, ..., O1j}.

Assume:

Q = Tr(e)∩Tr(B) = {O11, O12, ..., O1j , ..., O1i},
then ‖Q− P‖ ≥ 0.
σ(A∪{e})−σ(A) = σ(B∪{e})−σ(B)+‖Q− P‖.

Thus, σ(A ∪ {e})− σ(A) ≥ σ(B ∪ {e})− σ(B).

According to 1) and 2), the function σ(·) is submodular.
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